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Overview

1) Introduction 
• the QCD phase diagram in            - and mass-plane 
• critical behavior in the chiral limit
• lattice QCD and distortion of hadronic spectrum

2) Analyzing QCD critical behavior
• the transition temperature
• the curvature of the phase transition line
• critical behavior and hadronic fluctuations

3)Fluctuations on the lattice vs. HRG and experiment
• the approach to the HRG
• deviations from experiment

4) Summary  
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⇒ Universal behavior within a 
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Expected phase diagram of QCD:
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1) hadronic states at 
low T, low densities

2) quasi-free quarks 
and gluons hat high 
T, high densities

• Mechanisms:
1) spontaneous chiral 

symmetry breaking
2) (de-)confinement
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• Relevance:
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More critical points in QCD:

• chiral symmetry of 2-flavor QCD:
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order
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Z(2)

look for         -critical 
behavior

O(2)

SUL(2) × SUR(2) " O(4)

• hence, if       is large in 
(2+1)-flavor QCD:
expect universal behavior as 
of 3d-          spinsO(4)

ms

m
s

mtri
s

• staggered fermions preserve 
a flavor non-diagonal         -
part of chiral symmetry

U(1)

⇒

5

p4,               :              
mq = (2/5 − 1/80)ms

Nτ = 4

Ejiri et al, PRD 80 (2009) 094505

scaling studies:

HotQCD in preparation

asqtad, HISQ,                        :              Nτ = 6, 8, 12
mq = (1/5 − 1/20)ms

1) Introduction

• no clear evidence from 
simulations for many years



Mapping QCD to the O(N)-universal behavior:

• Thermodynamics in the vicinity of a critical point:

−
1
V

ln Z = fs(t, h) + fr(T, V, H)
(singular part) (regular part)

free energy density:

• Critical behavior is controlled by two relevant scaling fields:

scaling hypothesis:       is a generalized homogenous functionfs

h =
1
h0
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ms
⇒ 3 unique parameters zero density
⇒ 3 additional unique parameters at 

nonzero density
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61) Introduction

• Make use of known O(N)-scaling functions and fit non 
universal parameters

⇒ generates scaling functions
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Breaking of  flavor symmetry with staggered fermions:

1) Introduction (lattice setup)

• use smeared (asqtad,p4) and projected smeared (HISQ) links to 
reduce the flavor symmetry breaking:
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Figure 4. The splitting m2
π − m2

G of pseudoscalar meson multiplets calculated with the HISQ/tree and stout actions as a
function of α2

sa
2 (left). The right panel shows the RMS pion mass with mG = 140 MeV as a function of the lattice spacing for

the asqtad, stout and HISQ/tree actions. The band for the asqtad and stout actions shows the variation due to removing the
fourth point at the largest a in the fit. These fits become unreliable for a>∼0.16 fm and are, therefore, truncated at a = 0.16.
The vertical arrows indicate the lattice spacing corresponding to T ≈ 160 MeV for Nτ = 6, 8 and 12 lattices.

smallest lattice spacings given in Table VI. The corresponding results, plotted in Fig. 4, show the expected α2
sa

2
274

scaling, similar to that observed previously with the HISQ action in the quenched approximation [32] and in full QCD275

calculations with four flavors [33, 34]. In this analysis, following Ref. [42], we use αV (q = 3.33/a) from the potential276

as an estimate of αs. Linear fits in α2
sa

2 to the four points at the smallest lattice spacings shown in Fig. 4(left)277

extrapolate to zero within errors in the continuum limit. The data also show the expected approximate degeneracies278

between the multiplets that are related by the interchange γi to γ0 in the definition of ΓF as predicted by staggered279

chiral perturbation theory [48].280

The splittings for the stout action, taken from Ref. [21], for ΓF = γiγ5 and γiγj are also shown in Fig. 4 with open281

symbols. We find that they are larger than those with the HISQ/tree action for comparable lattice spacings.282

To further quantify the magnitude of taste-symmetry violations, we define, in MeV, the root mean square (RMS)283

pion mass as284

mRMS
π =

√
1

16

(
m2

γ5
+m2

γ0γ5
+ 3m2

γiγ5
+ 3m2

γiγj
+ 3m2

γiγ0
+ 3m2

γi
+m2

γ0
+m2

1

)
, (5)

and plot the data in Fig. 4(right) with mG tuned to 140 MeV. The data for the asqtad and stout actions were taken285

from Ref. [42] and Ref. [22], respectively. As expected, the RMS pion mass is the largest for the asqtad action and286

smallest for the HISQ/tree. However, for lattice spacing a ∼ 0.104 fm, which corresponds to the transition region for287

Nτ = 12, the RMS pion mass becomes comparable for the asqtad and stout actions. The deviations from the physical288

mass, mπ = 140 MeV, become significant above a = 0.08 fm even for the HISQ/tree action. For the lattice spacings289

∼ 0.156 fm (a ∼ 0.206 fm), corresponding to the transition region on Nτ = 8 (Nτ = 6) lattices, the RMS mass is a290

factor of two (three) larger.291

Next, we analyze the HISQ/tree data for pion and kaon decay constants, given in Appendix C, forml/ms = 0.05. We292

also analyze the fictitious ηss̄ meson following Ref. [46]. In Fig. 5, we show our results in units of r0 and r1 determined293

in Sec. II C as a function of the lattice spacing together with a continuum extrapolation assuming linear dependence294

on a2. We vary the range of the lattice spacings used in the fit, and take the spread in the extrapolated values as an295

estimate of the systematic errors. These extrapolated values agree with the experimental results within our estimated296

errors (statistical and systematic errors are added in quadrature) as also shown in Fig. 5. This consistency justifies297

using the continuum extrapolated value of fπr1 from Ref. [45] to convert r1 to physical units as discussed in Sec. II C.298

The deviation from the continuum value in the region of the lattice spacings corresponding to our finite temperature299

calculations, a measure of the discretization errors, is less than 8% for all the decay constants. We use these data to300

set the fK scale and analyze thermodynamical quantities in terms of it and to make a direct comparison with the301

stout action data [20–22].302

Finally, in Fig. 6 we show the masses of φ and K∗ mesons given in Appendix C as a function of the lattice spacing.303

(The rho meson correlators are very noisy, so we do not present data for the rho mass.) Using extrapolations linear304

in a2 we obtain continuum estimates, and by varying the fit interval we estimate the systematic errors and add these305

to the statistical errors in quadrature. The final estimates, in units of r0 and r1, are plotted with the star symbol306

HISQ vs. stout RMS pion mass

• define RMS pion mass as

mπ =

√
1
16
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1

)

⇒ additional             cutoff effects due to the distortion 
of the hadronic spectrum of QCD 

⇒ flavor symmetry breaking is most suppressed by the 
HISQ action

O(a2)



81) Introduction (lattice setup)

• previous results on fluctuations have been obtained with p4-action 
and                          ,  mq/ms = 0.1 Nτ = 4, 6

• Now: preliminary RBC-Bi results with HISQ/tree action 
and                            ,  Nτ = 6, 8, 12mq/ms = 0.05

⇒ for a detailed discussion of quadratic fluctuations and 
correlations see talk by P. Hegde

⇒ this talk: a more qualitative discussion of higher order 
fluctuations



Mapping QCD to the O(N)-universal behavior:

2) Analyzing QCD critical behavior

• in the vicinity of                           derivatives of the partition 
function are given by universal scaling functions:

(t, h) = (0, 0)

order parameter:

9

with z = t/h1/βδMb = ms
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Following the pseudo-critical line: 

HotQCD preliminary

Tc, t0, h0 → z0 = t0/h1/βδ
0

: chiral phase transition at Tc m = 0
z0 : controls mass dependence Tpc(mq/ms)

⇒

⇒

t = zp

(
mq

ms

)1/βδ

pseudo-critical line defined by the peak position      in the scaling 
function of the chiral susceptibility fχ(z)

zp

Tpc(mq/ms)
Tc

= 1 −
zp

z0

(
mq

ms

)1/βδ
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Figure 19. The data and the continuum extrapolation of the transition temperature obtained from the scaling analysis and
the position of the peak of the disconnected chiral susceptibility with the HISQ/tree and asqtad actions for ml/ms = 1/20
(left). The right figure shows estimates from O(4) scaling fits at the physical light quark mass (right). Extrapolations to the
continuum limit of the individual asqtad and HISQ/tree data are shown by red and blue lines, respectively. The black lines
show the result of a combined fit constrained to give the same value in the continuum limit.

Nτ Tc, O(4) Tc, O(2) Tc, O(4) Tc, O(2) Tc, cubic fit

ml/ms = 1/27 ml/ms = 1/27 ml/ms = 1/20 ml/ms = 1/20 ml/ms = 1/20

8 (asqtad) 183.0(3.1) 184.5(3.1) 185.5(3.1) 187.0(3.1) 182.9(2.2)

12 169.5(3.1) 172.0(3.1) 172.5(3.1) 175.0(3.1) 173.2(2.2)

∞ 158.7(6.1) 162.0(6.1) 162.1(6.1) 165.4(6.1) 165.4(4.3)

6 (HISQ/tree) 165.5(3.8) 168.0(3.8) 169.0(3.8) 171.5(3.8) 171.3(2.0)

8 161.5(3.8) 164.0(3.8) 165.0(3.8) 167.0(3.8) 165.5(2.0)

12 158.0(3.1) 158.0(3.1) 162.0(3.1) 162.0(3.1) 163.0(3.0)

∞ 155.6(4.1) 155.2(4.1) 159.7(4.1) 159.1(4.1) 159.3(3.4)

∞ (asqtad + HISQ/tree) 156.6(3.5) 157.3(3.5) 160.4(3.4) 161.2(3.4) 161.6(2.6)

Table I. Pseudocritical temperature Tc determined from cubic fits to the peak region of the disconnected chiral susceptibility
(6th column) and results of O(2) and O(4) scaling fits to the chiral condensates (5th and 4th columns, respectively). Columns
2 and 3 show results for Tc at the physical value of ml/ms using the O(4) and O(2) scaling ansätze. The temperature scale is
set using r1. Rows labeled ∞ give results after continuum extrapolation for the asqtad and HISQ data individually and from
a combined fit (last row).

the black lines in Fig. 19(right).671

Based on the above analysis, we quote the result of the extrapolation of the combined HISQ/tree and asqtad data672

as our best estimate. Note that the O(2) and O(4) ansätze give consistent estimates for the extrapolated value, 157673

MeV, and the statistical error, 4 MeV. With the current data, we cannot estimate the systematic error associated674

with the continuum extrapolation due to using just linear fits as the three data points with the HISQ/tree action675

show almost no deviation from linearity as evident from Figs. 19. In short, our analysis is not sensitive to any higher676

order corrections. We, therefore, take the difference between the Nτ = 12 and the continuum extrapolated value for677

the HISQ/tree action, ∼ 3 MeV, as our estimate of the systematic error. With this error analysis, our final result678

after continuum extrapolation, and at the physical light quark masses, ml/ms = 1/27, is679

Tc = (157± 4± 3± 1)MeV . (38)

Here, the first error is the statistical error, the second is an estimate of the systematic uncertainty, and the third is680

the propagation of the error in the determination of r1 in physical units. To obtain an overall single error estimate681

we combine the statistical and systematic errors in quadrature and then add the error due to the uncertainty in the682

scale coming from r1. This gives Tc = (157± 6) MeV.683

continuum extrapolation:

⇒ consistent with: Y. Aoki, et al., PLB 643 (2006) 47

2) Analyzing QCD critical behavior



Following the critical line:

• Determine       by a scaling analysis of the mixed susceptibility 

• Three parameters (                   ) have been fixed by the magnetic 
equation of state

Tc, t0, h0

κq

M = h1/δfG(z)

χm =
∂2M

(∂µ/T )2
=

2κq

t0Tc
h(β−1)/βδf ′

G(z) ∝ χt

⇒ one fit parameter: κq
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Kaczmarek et al., PRD 83 (2001) 014504

zT/Tc − 1

⇒ obtain from  p4-action,                      : κq = 0.059(6)Nτ = 8, 4

112) Analyzing QCD critical behavior
Tc(µq)

Tc
= 1 − κq

(
µq

T

)2



Critical line vs. freeze-out line:
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• Statistical models are very successful in describing particle 
abundances observed in heavy ion collision; use a parametrization 
of the freeze-out curve

statistical model:

lattice:

• open issues: continuum limit, strangeness conservation, nonzero 
electric charge

Cleymans, et al., PRC 73 (2006) 034905

Tc

T
= 1 − 0.0066(7)

(
µB

T

)2

Tc

T
= 1 − 0.023

(
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− d

(
µB

T

)4

⇒ curvature of the freeze-out curve seems to be larger 

122) Analyzing QCD critical behavior

Kaczmarek et al., PRD 83 (2001) 014504

assume here Tc = Tf



Analyzing baryon number fluctuation 

• higher moments of baryon number fluctuations are more and more 
sensitive to the critical behavior. 
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baryonic fluctuations: derivatives of the 
pressure with respect to 

⇒ perform scaling analysis
⇒ compare to heavy ion experiments

µB

13

χB
n =

∂n(p/T 4)
∂(µB/T )n

2) Analyzing QCD critical behavior



Analyzing baryon number fluctuation 
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 (chiral limit)
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• higher moments of baryon number fluctuations are more and more 
sensitive to the critical behavior. 

χB
n =

∂n(p/T 4)
∂(µB/T )n

2) Analyzing QCD critical behavior



Analyzing baryon number fluctuation 
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• higher moments of baryon number fluctuations are more and more 
sensitive to the critical behavior. 

χB
n =

∂n(p/T 4)
∂(µB/T )n

2) Analyzing QCD critical behavior



ln Z(T, V, µB, µS, µQ) =
∑

i∈hadrons

ln Zmi(T, V, µB, µS, µQ)

∑
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ln ZB
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=
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mesons:

hadron resonance gas:

Boltzmann 
approximation

ratios are 
independent of 
spectrum and 

volume

3 ratios:
χB

4
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= κσ2 =
B4
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= 1

χB
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coth(µB/T )

χB
3
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possibly large 
parts of cut-off 
effects cancel

→

3)Baryon number fluctuations: lattice vs. HRG 16



3)Baryon number fluctuations: lattice vs. HRG 17

⇒ cutoff dependence of Tc 

Skokov et al., PRD 82 (2010) 034029.

⇒ pronounced step function
indicating deconfinement

baryon 
number 
carried by 
hadrons 

baryon 
number 
carried by 
quarks

kink at Tc from critical 
behavior?

PQM-model (mean field)

4. order fluctuations
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6. order fluctuations
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6. order fluctuations
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ln Z(T, V, µB, µS, µQ) =
∑

i∈hadrons

ln Zmi(T, V, µB, µS, µQ)

∑

i∈mesons

ln ZB
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∑
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mesons:

hadron resonance gas:

3)Q and S fluctuations: lattice vs. HRG 20

χQ
4

χQ
2

=
F (Q=±1) + 16F (Q=±2)

F (Q=±1) + 4F (Q=±2)

χS
4

χS
2

=
F (S=±1) + 16F (S=±2) + 81F (S=±3)

F (S=±1) + 4F (S=±2) + 9F (S=±3)

contributions from double charged 
particles, dominated by charged pions 

for low T

contributions from double and triple 
strange particles, dominated by Kaons 

for low T

⇒ deviations from unity for T ! 100 MeV
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4. order fluctuations

RBC-Bi 
preliminary

hisq

p4 ⇒ cutoff effects can not be 
absorbed in Tc

⇒ electric charge fluctuations are sensitive to the light pion sector 
(which is distorted on the lattice)

⇒ interpolation between 
HRG and free quarks

⇒ no or very little sign of 
critical behavior
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4. order fluctuations
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6. order fluctuations

electric charge fluctuations are sensitive to the light pion sector 
(which is distorted on the lattice)

⇒ continuum extrapolations for higher moments of electric charge 
fluctuations become increasingly difficult 

⇒
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hisq hisq

⇒ negative fluctuations 
above Tc
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4. order fluctuations
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Approaching a critical end-point at               ? 
• a Taylor expansion approach: 

µB > 0

• for now: use parametrization of freeze-out line from statistical 
models  in terms of the center of mass energy

243)Hadronic fluctuations: lattice vs. experiment

p/T 4 = c0 + c2(µ/T )2 + c4(µ/T )4 + c6(µ/T )6 + · · ·

⇒ χ2

χ1
=

2c2 + 12c4(µ/T )2 + 30c6(µ/T )4 + · · ·
2c2(µ/T ) + 4c4(µ/T )3 + 6c6(µ/T )5 + · · ·

=
(

µ

T

)−1 1 + 6(c4/c2)(µ/T )2 + 15(c6/c2)(µ/T )4 + · · ·
1 + 2(c4/c2)(µ/T )2 + 3(c6/c2)(µ/T )4 + · · ·

can be used to get a model independent freeze out line, 
input: continuum extrapolated c4/c2 from lattice QCD

⇒ similar expansions for χ4/χ2, χ3/χ2



Approaching a critical end-point at               ? 
• analyze ratios of moments of baryon number fluctuations

µB > 0

⇒ independent of the spectrum, simple dependence on µB

• use parametrization of freeze-out line in the center of mass energy

Mukherjee, QM’11, arXiv:1107.0765

STAR data: 
Aggarwal et al., PRL (2010) 022302

net-proton number fluctuations 
are close to HRG and lattice 
QCD (using HRG input)

⇒ systematic and statistical 
errors increase for

CS, Prog. Theor. Phys. Suppl. 
186 (2010) 563 

⇒
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Figure 4. (a) The baryon-strangeness correlation [14] using the HISQ (BNL-Bielefeld)
and the stout [11] actions. The dotted lines indicate the results for the hadron
resonance gas model (HRG) and for the free fermionic gas (SB). (b) Experimentally
measured moments of net-proton fluctuations [15] are compared to lattice QCD
computations of ratios of baryon number susceptibilities by the BNL-Bielefeld [17]
and the Mumbai [18] groups. The HRG results are from Ref. [19]. (c) An example of
the sensitivity of the ratios of conserved charge susceptibilities to different orders of
Taylor expansion [17]. See text for detail.

the Taylor series expansions of the susceptibilities themselves, e.g. the baryon number

susceptibilities at µB > 0 are given by— χB
n (µB, T ) =

∑

∞

k=0(1/k!)χ
B
n+k(0, T )(µB/T )k.

These generalized susceptibilities are measures of the moments of the conserved charge

distributions. As for example— V T 3χB
1 (µB, T ) = 〈NB〉, V T 3χB

2 (µB, T ) = 〈(δNB)2〉,
V T 3χB

3 (µB, T ) = 〈(δNB)3〉, V T 3χB
4 (µB, T ) = 〈(δNB)4〉 − 3 〈(δNB)2〉

2
etc. measure

different moments of the distribution of the net baryon number NB(µB, T ), where
δNB(µB, T ) = NB(µB, T ) − 〈NB(µB, T )〉. On the other hand, such moments of

conserved charges have also been measured by the STAR experiment [15] using event-

by-event fluctuations in the Relativistic Heavy Ion Collider (RHIC) at various energies

(
√
sNN) . As for example, in heavy-ion collision experiments one measures the

moments— mean MB(
√
sNN) = 〈NB〉, variance σ2

B(
√
sNN) = 〈(δNB)2〉, skewness

SB(
√
sNN) = 〈(δNB)3〉 /σ3

B, kurtosis KB(
√
sNN ) = 〈(δNB)4〉 /σ4

B − 3 etc. . Assuming—
(i) experiments measure conserved charge distributions of a thermalized system, (ii)

measured moments characterize the chemical freeze-out condition and (iii) T (
√
sNN)

and µB(
√
sNN) at the chemical freeze-out can be modeled by the hadron resonance

gas model [8], the experimentally measured volume independent combinations of

the moments can be related to the ratios of susceptibilities computed from lattice

QCD— σ2
B(
√
sNN)/MB(

√
sNN ) = χB

2 (µB, T )/χB
1 (µB, T ), σB(

√
sNN)SB(

√
sNN) =

χB
3 (µB, T )/χB

2 (µB, T ), σ2
B(
√
sNN )KB(

√
sNN) = χB

4 (µB, T )/χB
2 (µB, T ) etc. .

As net proton fluctuations can be treated as a proxy for the net baryon number

fluctuations [16], in Fig. 4(b) we show a comparison of the experimentally measured

moments of net proton distribution [15] to the lattice QCD calculations of the ratios of

the baryon number susceptibilities using improved p4fat3 [17] and un-improved naive

[18] staggered actions. As can been seen, the experimental data and the lattice QCD
computations are in good agreement with each other and also with that from the hadron

resonance gas calculations [19]. This, for the first time, shows a direct comparison
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Approaching a critical end-point at               ? 
• analyze ratios of moments of baryon number fluctuations

µB > 0

⇒ independent of the spectrum, simple dependence on µB

• use parametrization of freeze-out line in the center of mass energy

Mukherjee, QM’11, arXiv:1107.0765

STAR data: 
Aggarwal et al., PRL (2010) 022302
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Figure 4. (a) The baryon-strangeness correlation [14] using the HISQ (BNL-Bielefeld)
and the stout [11] actions. The dotted lines indicate the results for the hadron
resonance gas model (HRG) and for the free fermionic gas (SB). (b) Experimentally
measured moments of net-proton fluctuations [15] are compared to lattice QCD
computations of ratios of baryon number susceptibilities by the BNL-Bielefeld [17]
and the Mumbai [18] groups. The HRG results are from Ref. [19]. (c) An example of
the sensitivity of the ratios of conserved charge susceptibilities to different orders of
Taylor expansion [17]. See text for detail.

the Taylor series expansions of the susceptibilities themselves, e.g. the baryon number

susceptibilities at µB > 0 are given by— χB
n (µB, T ) =

∑

∞

k=0(1/k!)χ
B
n+k(0, T )(µB/T )k.

These generalized susceptibilities are measures of the moments of the conserved charge

distributions. As for example— V T 3χB
1 (µB, T ) = 〈NB〉, V T 3χB

2 (µB, T ) = 〈(δNB)2〉,
V T 3χB

3 (µB, T ) = 〈(δNB)3〉, V T 3χB
4 (µB, T ) = 〈(δNB)4〉 − 3 〈(δNB)2〉

2
etc. measure

different moments of the distribution of the net baryon number NB(µB, T ), where
δNB(µB, T ) = NB(µB, T ) − 〈NB(µB, T )〉. On the other hand, such moments of

conserved charges have also been measured by the STAR experiment [15] using event-

by-event fluctuations in the Relativistic Heavy Ion Collider (RHIC) at various energies

(
√
sNN) . As for example, in heavy-ion collision experiments one measures the

moments— mean MB(
√
sNN) = 〈NB〉, variance σ2

B(
√
sNN) = 〈(δNB)2〉, skewness

SB(
√
sNN) = 〈(δNB)3〉 /σ3

B, kurtosis KB(
√
sNN ) = 〈(δNB)4〉 /σ4

B − 3 etc. . Assuming—
(i) experiments measure conserved charge distributions of a thermalized system, (ii)

measured moments characterize the chemical freeze-out condition and (iii) T (
√
sNN)

and µB(
√
sNN) at the chemical freeze-out can be modeled by the hadron resonance

gas model [8], the experimentally measured volume independent combinations of

the moments can be related to the ratios of susceptibilities computed from lattice

QCD— σ2
B(
√
sNN)/MB(

√
sNN ) = χB

2 (µB, T )/χB
1 (µB, T ), σB(
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√
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√
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As net proton fluctuations can be treated as a proxy for the net baryon number

fluctuations [16], in Fig. 4(b) we show a comparison of the experimentally measured

moments of net proton distribution [15] to the lattice QCD calculations of the ratios of

the baryon number susceptibilities using improved p4fat3 [17] and un-improved naive

[18] staggered actions. As can been seen, the experimental data and the lattice QCD
computations are in good agreement with each other and also with that from the hadron

resonance gas calculations [19]. This, for the first time, shows a direct comparison
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Approaching a critical end-point at               ? 
• analyze ratios of moments of baryon number fluctuations

µB > 0

⇒ independent of the spectrum, simple dependence on µB

• use parametrization of freeze-out line in the center of mass energy

Mukherjee, QM’11, arXiv:1107.0765

STAR data: 
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net-proton number fluctuations 
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Figure 4. (a) The baryon-strangeness correlation [14] using the HISQ (BNL-Bielefeld)
and the stout [11] actions. The dotted lines indicate the results for the hadron
resonance gas model (HRG) and for the free fermionic gas (SB). (b) Experimentally
measured moments of net-proton fluctuations [15] are compared to lattice QCD
computations of ratios of baryon number susceptibilities by the BNL-Bielefeld [17]
and the Mumbai [18] groups. The HRG results are from Ref. [19]. (c) An example of
the sensitivity of the ratios of conserved charge susceptibilities to different orders of
Taylor expansion [17]. See text for detail.

the Taylor series expansions of the susceptibilities themselves, e.g. the baryon number

susceptibilities at µB > 0 are given by— χB
n (µB, T ) =

∑

∞

k=0(1/k!)χ
B
n+k(0, T )(µB/T )k.

These generalized susceptibilities are measures of the moments of the conserved charge

distributions. As for example— V T 3χB
1 (µB, T ) = 〈NB〉, V T 3χB

2 (µB, T ) = 〈(δNB)2〉,
V T 3χB

3 (µB, T ) = 〈(δNB)3〉, V T 3χB
4 (µB, T ) = 〈(δNB)4〉 − 3 〈(δNB)2〉

2
etc. measure

different moments of the distribution of the net baryon number NB(µB, T ), where
δNB(µB, T ) = NB(µB, T ) − 〈NB(µB, T )〉. On the other hand, such moments of

conserved charges have also been measured by the STAR experiment [15] using event-

by-event fluctuations in the Relativistic Heavy Ion Collider (RHIC) at various energies

(
√
sNN) . As for example, in heavy-ion collision experiments one measures the

moments— mean MB(
√
sNN) = 〈NB〉, variance σ2

B(
√
sNN) = 〈(δNB)2〉, skewness

SB(
√
sNN) = 〈(δNB)3〉 /σ3

B, kurtosis KB(
√
sNN ) = 〈(δNB)4〉 /σ4

B − 3 etc. . Assuming—
(i) experiments measure conserved charge distributions of a thermalized system, (ii)

measured moments characterize the chemical freeze-out condition and (iii) T (
√
sNN)

and µB(
√
sNN) at the chemical freeze-out can be modeled by the hadron resonance

gas model [8], the experimentally measured volume independent combinations of

the moments can be related to the ratios of susceptibilities computed from lattice

QCD— σ2
B(
√
sNN)/MB(

√
sNN ) = χB

2 (µB, T )/χB
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2 (µB, T ) etc. .

As net proton fluctuations can be treated as a proxy for the net baryon number

fluctuations [16], in Fig. 4(b) we show a comparison of the experimentally measured

moments of net proton distribution [15] to the lattice QCD calculations of the ratios of

the baryon number susceptibilities using improved p4fat3 [17] and un-improved naive

[18] staggered actions. As can been seen, the experimental data and the lattice QCD
computations are in good agreement with each other and also with that from the hadron

resonance gas calculations [19]. This, for the first time, shows a direct comparison
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5) Summary  

• QCD with physical quark masses is sensitive to universal scaling 
properties in the chiral limit 

• Tc and the curvature of the phase transition line are two important 
non universal parameters that can be obtained by mapping QCD to 
O(N) critical behavior  

Current results suggests that the curvature of the chiral phase 
transition line is smaller than that of the freeze-out curve.

                  only for small     ? 

⇒

results need to be confirmed in the continuum limit w/o using 
HRG input

• We have calculated high order baryonic fluctuations, which are more 
and more sensitive to the critical behavior of QCD

• Ratios of baryonic susceptibilities are sensitive to the relevant degrees 
of freedom but are rather independent on the spectrum and volume. 

• STAR data on net-proton fluctuations can be reasonably described by 
lattice data (using HRG input) for                                       

⇒

28

Tc ≈ Tf µ

√
s ! 20 GeV


